Составление и использование разноуровневых заданий для дифференцированной работы с учащимися

Математика 21 августа 2016 г., 6:25

Составление и использование разноуровневых заданий для дифференцированной работы с учащимися

Марадудин В.Г., учитель математики

МОУ «Бессоновская СОШ Белгородского района Белгородской области»

Проблема дифференцированного подхода не является новой для современной школы. Однако выдвижение и развитие концептуальной идеи планирования обязательных результатов обучения позволило подойти к этой проблеме с новых позиций. Принципиальное отличие нового подхода состоит в том, что перед разными категориями учащихся ставятся различные цели: одни ученики должны достичь определённого объективно обусловленного уровня математической подготовки, называемого базовым, а другие, проявляющие интерес к математике и обладающие хорошими математическими способностями, должны добиться более высоких результатов.

В соответствии с этим в классе могут быть выделены две группы учащихся: группа базового уровня и группа повышенного уровня. Конечно, состав групп не должен быть застывшим. Желательно, чтобы любой ученик из группы базового уровня мог перейти в группу повышенного уровня, если он хорошо усвоит материал и будет свободно выполнять задания, соответствующие обязательным результатам обучения. С другой стороны, ученик из группы повышенного уровня может быть переведен в группу базового уровня, если он имеет пробелы в знаниях или не справляется с темпом продвижения группы.

Дифференцированный подход целесообразно осуществлять на определённых этапах урока. Так, на этапе введения нового понятия, свойства, алгоритма учителю необходимо работать со всем классом, без деления его на группы. Но после того, как несколько упражнений выполнено на доске, учащиеся могут приступить к дифференцированной самостоятельной работе. Её особенность состоит в том, что группа базового уровня и группа повышенного уровня получают задания, различающиеся не только содержанием, но и формой их подачи.

Автор иллюстрирует это на дифференцированных заданиях, составленных к некоторым темам курса алгебры 7 класса.

Задания составлялись в двух вариантах: вариант 1 предназначался для группы базового уровня, вариант 2 - для группы повышенного уровня. Вариант 1 содержит большое количество простых тренировочных упражнений с постепенным пошаговым нарастанием трудности. Во втором варианте преобладают задания комбинированного характера, требующие установления связей между отдельными компонентами курса и применения нестандартных приёмов решения. В каждом варианте упражнения начинаются с простейших и располагаются по возрастающей сложности. Однако это возрастание в разных вариантах проходит с разным ускорением. Вариант 1 строится таким образом, что переход от одного упражнения к другому связан с небольшим варьированием данных или с незначительными усложнениями формулировки задания. Такой подход позволяет решить важную дидактическую задачу – предоставить слабым учащимся возможность на каждом шаге преодолевать только одну какую-либо трудность. Во 2 варианте сложность заданий возрастает в значительно более высоком темпе. Это позволит быстрее пройти начальный этап формирования соответствующего умения и выйти на усложнённые комбинированные задания.

В качестве примера автор показывает, как строится система упражнений для самостоятельной работы по одной теме курса алгебры 7 класса.


Задания по теме «Сложение и вычитание многочленов»

Вариант1

  1. Закончите выполнение сложения и вычитания многочленов:

а) (2х-3у)+(4х-8у)=2х-3у+4х-8у =

б) (2х4 +7х3) – (х4 -3х3) = 2х4 +7х3 – х4 + 3х3 =

2. Раскройте скобки, перед которыми стоит знак «плюс» или знак «минус», используя соответствующее правило:

а) 3а2 + (а + 4); б) 7х3 + ( - х2 – 3х); в) 17bc – (b – c ); г) 4у3 – (у2 – у +1);

3. Раскройте скобки и выполните приведение подобных членов:

а) 8a + (3b – 5a); б) 5х – (3 – х); в) (3х +6) + (12 – 2х); г) (2,5х – 4) – (9,5х + + 2);

4. Упростите выражение:

а) (12х + 3у) + (2х – 4у);

б) (х2 + 2х – 1) + (3х2 – х +6);

в) (4ху -3х2) – ( - ху + 5х2);

г) (х2 – ху + у2) – ( - 2х2 – ху – у2).

5. Упростите выражение и найдите его значение при a=4:

a) (a2 – 2a + 3) – (a2 – 5a + 1) – 4;

б) (5a – 6) – (3a + 8) + (6 – a).

6. Докажите, что при любом а значение выражения

(2а + 5) + (а – 1) – (3а + 2) равно 2.

7. Карандаш стоит а копеек, а тетрадь b копеек. Саша купил 3 карандаша и одну тетрадь. Петя купил 4 карандаша и 10 тетрадей, а Боря – 2 карандаша и 6 тетрадей. Сколько денег уплатил каждый из них? Все вместе?

8. Пусть А=5х2 – у, В=3у + х2.. Составьте и упростите выражение: а) А+В; б) А- - В; в) В +А; г) В – А. Сравните результаты.


Вариант 2

1. Составьте сумму и разность данных многочленов и упростите их:

а) 4b2 + 2b и b2 – 2b; в) 5х2 + 6ху и х2 – 12ху.

2. Упростите выражение:

а) (42х + 106у) – (17х -84у) + (14х – у);

3. Пусть А=5х2 – ху + 12ху2; В=4х2 + 8ху – у2; С=9х2 – 11 у2. Составьте и упростите выражение: а) А+В-С; б) А-В+С; в) –А +В+С.

4. Докажите, что значение выражения (х2 – 6 ху + 9у2) + (3х2 + ху – 7у2) – (х2 – 5ху +2у2) не зависит от у.

5. Докажите, что при всех значениях х и у сумма многочленов 1/3х2 – ху + 0,5у2 -1 и 2/3х2 + ху + 0,5у2 +16 является положительным числом.

6. Замените М многочленом так, чтобы полученное равенство было тождеством:

а) М + (3х2 + 6ху – у2)=4х2 + 6ху;

б) (6х2 – у) – М=5х2 + ху +12у.

7. Туристы в первый день прошли а км, а в каждый следующий день проходили на 5 км больше, чем в предыдущий. Какой путь прошли туристы за четыре дня?

8. Четырёхзначное число начинается с 1 и заканчивается 1. В этом числе две средние цифры поменяли местами. Докажите, что разность между данным числом и новым числом кратна 90.

В целом задания второго варианта превосходят задания первого варианта и в техническом, и в эвристическом плане. Но по фабуле они могут и не отличаться существенным образом. На таких заданиях автор иллюстрирует особенности вариантов, дав их в виде параллельных списков, которые охватывают различные темы курса алгебры 7 класса.

Однородные задания

1. Коля сделал 27 деталей за 3 часа, а Петя 20 деталей за 2,5 часа. У кого из них производительность выше?

1. Коля может выполнить всю работу за 3 часа, Петя – за 4 часа, Вася – за 5 часов, Дима – за 6 часов. Кто быстрее выполнит работу: Коля вместе с Димой, или Петя вместе с Васей?

2. Деревня, посёлок и город находятся на одном шоссе. Деревня расположена на расстоянии а км от города, посёлок на расстоянии b км от города. Чему равно расстояние от деревни до посёлка? Рассмотрите случаи, когда а) город расположен меду деревней и посёлком; б) деревня расположена городом и посёлком? в) посёлок расположен между деревней и городом.

Для каждого случая сделайте чертёж.

2. Деревня, посёлок и автостанция расположены на одном шоссе. Расстояние от деревни до автостанции a км, а от посёлка до автостанции - b км. Сколько времени потребуется туристам на путь от деревни до посёлка, если они

будут идти со скоростью 5 км/ч? Опишите ситуацию при которой искомое время (в часах) равно: а) а-b/5; в) b-a/5; в) а+b/5. Для каждого случая сделайте чертёж.

3. Найдите такое значение а, при котором ах=144 имеет корень 6.

3. При каких натуральных значениях а корнем уравнения ах-11=3х+1 является натуральное число?

В каждый вариант наряду с тренировочными задачами автор включает задачи развивающего характера, решение которых связано с проявлением смекалки, сообразительности. Доказано, что отставание слабых учащихся по математике связано с низким уровнем их развития. Поэтому автор считает, что не только сильным, но и слабым учащимся надо предлагать задания, требующие нестандартных решений. Конечно, для слабых учеников подбираются простые, достаточно «прозрачные» задачи на соображение, для сильных – более сложные задачи.

Задания творческого характера

Вариант 1

1. Не выполняя вычислений, определите, положительным или отрицательным числом является значение выражения: а) 3,2∙1,6-36; б) 10-26,01꞉3.

2. В числе 41* замените знак «*» цифрой так, чтобы получилось чётное число, кратное 3.

3. При изменении роста учеников в конце учебного года оказалось, что Коля на 5 см выше, чем Петя. За лето Коля вырос на 2 см, а Петя на 3 см. Кто из мальчиков стал выше и на сколько?

4. Известно, что при некоторых значениях а и b значение выражения а-b равно 3. Чему равно при тех же а и b значение выражения а) (b – a)2; б) 12b – 12a; в) (а – b)2; г) (b – a)2; д) 3а2 - 6аb + 3b2; е) а2 + b2 - 1 – 2ab?

Вариант 2

1. Сравните с нулём числа k и b, если известно, что на графике функции у=kx + b нет ни одной точки, у которой обе координаты положительны.

2. При каком значении b при умножении многочленов х2+ bx – 8 и x +4 получается многочлен стандартного вида, который имеет одинаковые коэффициенты при х2 и х?

3. Разложите на множители многочлен а2 +4аb – 3a2 b - 6ab2 +4b2.

4. Группу туристов из 26 человек надо расселить в двухместные и трёхместные каюты так, чтобы в каютах не оставалось свободных мест. Сколько двухместных и сколько трёхместных кают надо заказать для группы? (Укажите все возможные способы.)

В каждом из вариантов желательно предусмотреть инструктивный материал, предназначенный для оказания учащимся помощи в выполнении предлагаемых заданий. Особенность 1 варианта состоит в том, что в нём инструктивный материал представлен достаточно широко. Это образцы решений, алгоритмические предписания, задания с начатым, но не оконченным решением, задания с пропущенными данными, задания с выбором ответа, данные для самоконтроля, ответы.

Задания, содержащие инструктивный материал

Вариант 1

1. От прямоугольного листа жести со сторонами а и b метров отрезали квадратный кусок со стороной х м. Какова площадь оставшейся части? Выберите из данных ответов верный.

а) х2 +аb; б) х2 - аb; в) аb - х2; г) (а – х)∙(b – x).

2. Закончите выполнение разложения многочлена на множители способом группировки:

а) х3 - х2 у + 6х – 6у = (х3 – х2у) + (6х – 6у) = х2 (х-у) +6(х – у)=…

б) 5х6 - 5х5у – х + у= (5х6 - 5х5у) – (х – у)=…

3. Замените знак «*» одночленом так, чтобы данное равенство было тождеством: а) (* + у)2 = 4х2 + * + у2; б) (у - *)2 = * - * + х2; в) (5х - *)2 = 25х2 - * + у2; г) (*- *) = 4х2 - * + 9у2.

4. Решите уравнение: 13(х – 1) – 4(х + 2) = 6х – 1. Для этого:

- раскройте скобки;

- члены, содержащие х, перенесите в левую часть уравнения, а свободные члены – в правую;

- приведите подобные члены;

- решите получившееся линейное уравнение.

5. Решите уравнение:

а) 3(х – 4) +х=6 – 2х; б) 26 – 4х=12х – 7(х + 4).

Для самоконтроля:

1) после раскрытия скобок должно получиться уравнение:

а) 3х – 12 + х=6 – 2х; б) 26 – 4х=12х – 7х – 28.

2) после переноса слагаемых и приведения подобных членов должно получиться уравнение: а) 6х=18; б) -9х=-54.

6. Решите уравнение: а) 2х + 3(10 – х)=28 + х; б) 3(2 – х) – 5(3х + 1)=6 – х.

Для самоконтроля: Решение данного уравнения сводится к решению линейного уравнения: а) -2х=-2; б) -17х=5.

7. Решите уравнение:

а) 15(х +2)=6(2х + 7);

б) 6918 – 2у)=54 – 3(4 + 5у);

в) 6(2 – х)=-3(х + 8);

г) 3(2х + у)=6у -7(11 – у).

Проверьте ответ: а) 4; б) 12; в) -22; г) 13,7.

В заданиях 4-7 происходит постепенное сужение данных предназначенных для помощи ученику. В задании 4 учащиеся получают развёрнутое алгоритмическое предписание, в следующих упражнениях для облегчения самоконтроля показаны два шага решения, потом – один шаг и, наконец, даётся только ответ.

Задания для 2 варианта не приводятся, так как соответствующий контингент учащихся нуждается во вспомогательных инструктивных материалах лишь эпизодически. Эти материалы для 2 варианта могут ограничиваться краткими указаниями и ответами к отдельным упражнениям.

Разноуровневые задания облегчают организацию занятий в классе, создают условия для продвижения школьников в учёбе в соответствии с их возможностями.

Слабые учащиеся охотно выполняют задания, содержащие инструктивный материал, особенно те упражнения, в которых приведены данные для самоконтроля. Это позволило сделать вывод, что таким школьникам недостаточно только показывать ответ (как это делается в учебнике). Выяснив, что получен неверный ответ к заданию, ученик не в состоянии проследить всю цепочку и найти ошибку.

Предлагая задания творческого характера, автор старается стимулировать познавательную активность слабых школьников. Ребята, потратившие определённые усилия на творческие задания, охотно принимали участие в обсуждении этих заданий, с интересом выслушивали объяснение приёмов их решения даже в тех случаях, когда они этих приёмов сами найти не смогли.

Занятия строились на основе сочетания индивидуальной и коллективной работы учащихся, входящих в одну группу. После самостоятельного выполнения заданий одна из групп приступала под руководством учителя к проверке ответов, обсуждению результатов, выявлению наиболее рациональных путей решения. Другая группа в это время продолжала работать самостоятельно. Затем учитель даёт новое задание группе. С которой он только что работал. И переключал своё внимание на другую группу. Предъявление разноуровневых заданий давало возможность варьировать для каждой группы учебную нагрузку, предлагая каждой из них посильные задания. Тем самым время урока использовалось более эффективно.

Разноуровневые задания, составленные с учётом возможностей учащихся, создавали в классе благоприятный психологический климат. У ребят возникало чувство удовлетворения после каждого верно решенного задания. Успех, испытанный в результате преодоления трудностей, давал мощный импульс повышению познавательной активности. У учащихся, в том числе и слабых, появлялась уверенность в своих силах. Они уже не чувствовали страха перед новыми задачами, рисковали пробовать свои силы в незнакомой ситуации, брались за решение задач более высокого уровня. Всё это способствовало активизации мыслительной деятельности учащихся, созданию положительной мотивации к учению.

Теги: Maradudin 0


Станьте первым!

Пожалуйста, авторизуйтесь или зарегистрируйтесь для комментирования!